ARTIGO ORIGINAL
ISSN 1677-5090
© 2010 Revista de Ciências Médicas e Biológicas

Loss of memory induced by swimming exercise in mice treated with lithium and anxiolytic-like effects

José Geraldo Pereira da Cruz1, Daniela Delwing de Lima2, Débora Delwing Dal Magro3, Jaqueline Rafaela Bernardes1, Julia Niehues da Cruz1, Larissa Hermann de Souza1

1Department of Natural Sciences, Universidade Regional de Blumenau, Santa Catarina, Brazil; 2Department of Pharmacy, Universidade da Região de Joinville, Santa Catarina, Brazil; 3Department of Medicine, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil.

Abstract
Previous studies have indicated that chronic exercise mimics some of the central nervous system effects observed after antidepressant drug treatment. The purpose of this work was to investigate the possible effect of lithium treatment in mice swimmers in the animals models of anxiety and memory. The mice were evaluated at the elevated plus-maze, open-field, Morris water maze and object recognition. Adult male Swiss mice were divided in four groups: control sedentary (CS), lithium sedentary (LS), control swimming exercise (CE), and lithium swimming exercise (LE), treated either with normal chow or with chow containing with 0,25% lithium carbonate for 30 days. The results suggest that lithium treatment, swimming exercise or lithium treatment combined with swimming exercise induces an anxiolytic-like effect in mice in the elevated plus-maze test. These symptoms were observed in LS as an increase in time spent in the open arms and open arms entries (F = 3.274; p<0,05 and F = 4.093; p<0,05; respectively); while CE - LE showed an increase in time spent in the risk assessment (F = 17.644; p<0,001). The open-field tests indicated a reduction of fear and an increase in exploratory activity. The LS - CE reduced the time spent in the freezing (F = 3.274; p<0,05) and CE - LE increased the time spent in the exploratory activity (F = 9.149; p<0,001). Comparison within each group during the five days of Morris water maze test, showed a decrease of latency time of groups LS - CE from the second day of the testing (F = 21.512; p<0,001 and F = 3.688; p<0,001; respectively). In object recognition test, mice of group CE increased in exploration ratio in both short (STM) and long-term object recognition memory (LTM), when compared to CS (F = 9.246; p<0,001). The groups LS - LE did not differ significantly from CS (p>0,05). The present study found that swimming exercise and/or lithium treatment induced an anxiolytic-like effect, indicating that interactions between physical activity and/or lithium may be beneficial. However, the lithium treatment prevents the increase in learning and memory improvement induced by swimming exercise. The results provide evidence that stimulates investigation of the possibility that swimming exercise, in conjunction with lithium treatment, could represent a new approach to improvement of behavioral management in depression.

Received in 27 de julho de 2011; revisado em 30 de agosto de 2011.
Correspondência / Correspondence: José Geraldo Pereira da Cruz.
Department of Natural Sciences, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89012900, Blumenau, Santa Catarina, Brazil. E-mail: jgcruz@furb.br

INTRODUCTION
Lithium or physical exercise has been used as an important in the treatment of manic-depressive1,2. It is interesting to note that a combination of behavioral and
pharmacological therapy is considered the most effective clinical intervention for depression\(^7\). Presently, the neurobiological mechanisms underlying the decreased anxiety and increased learning and memory by lithium treatment and/or physical exercise are still unclear.

The reported effects of lithium on many tests of fear and anxiety are not consistent: for example, in the conditioned freezing model of fear, in which the duration of the freezing response of electric shock is measured, lithium has been shown to enhance, to inhibit, or to have no impact upon freezing\(^4,5,6\). In addition, in rodents the anxiolytic effects of exercise has been somewhat more variable. In studies allowing animals voluntary access to a running wheel there are reports of anxiolytic effects\(^7,8,9\), no effects\(^10\) or increases in anxiety-like behavior following exercise\(^11\).

Reports on the effect of lithium on human cognition are inconsistent. Lithium treatment inhibits learning, memory, and speed of information processing in patients with bipolar disorders and to some extent in control subjects\(^12,13\). It has also been reported that lithium enhances memory in some tasks, and attenuates memory impairments induced by other factors\(^14,15\). As in humans, the effect of lithium on cognitive functioning in rodents is ambiguous. One group found an improvement in spatial reference memory, as measured by the Morris water maze; however, other reports of spatial working memory have yielded inconclusive results\(^16,17,18\). With respect to animal studies on learning and memory, physical exercise has been shown to have a beneficial effect on water maze\(^19,18,19,20\), passive avoidance\(^21,22\), pole-jumping active avoidance\(^23\), fear conditioning to the context\(^24\) and radial arm maze\(^25\). However, there are also a few studies using similar tasks that have reported no effects\(^26,27,28\) or even a negative effect\(^29\).

Exercise has demonstrated efficacy as a monotherapy\(^30\) as well as in combination with other treatments for depression\(^31\) when used as a first step treatment. Exercise is associated with increases in hippocampal neurogenesis, monoamine neurotransmission and synaptic growth\(^32\). These effects are similar to effects seen with medications, suggesting that a common physiological mechanism or pathway is involved. These data indicate that interactions between lithium and physical activity are complex. In this study, we have used the swimming exercise model in order to analyze the performance of mice in elevated plus-maze, open-field, Morris water maze and object recognition tests, after chronic lithium treatment.

MATERIAL AND METHODS

Animals

Male Swiss mice, aging 45 days and weighing 25-30 g were used in all experiments. Mice were reared in air-conditioned rooms (23±1°C), with a 12 h light-dark cycle; ten mice to a cage, with food and water *ad libitum*. All procedures followed a protocol approved by the local Institutional Animal Care and Use Committee.

Chronic lithium treatment

The mice were randomly assigned to one of two experimental groups: sedentary and swimming exercise. The mice were fed rat chow with 0.25% lithium carbonate added or fed its control diet (VETEC, Brazil) with supplemental saline (0.9%) in their home-cages. This treatment has been previously used, and at the end of a period of 4 weeks or more animals present lithium levels in the range of 0.4 – 1.2 mM\(^36,37,38\), similar to the levels observed in treated patients. These diets were the only source of nutrition for the animals and were administered throughout the swimming exercise. After 4 weeks exposure to the control or lithium diets, mice began behavioral tests.

Adaptation to the water

All the mice were adapted to the water before the beginning of the experiment. The adaptation consisted of keeping the animals in shallow water at 32±1°C, 5 days during one week in sessions lasted 10 min, from 08.00 a.m. to 05.30 p.m. The purpose of the adaptation was reducing the stress without, however, promoting physical training adaptations.

Exercise training

The mice of the exercise group were trained to swim 30 min/day, 5 days a week, during 8 weeks in a progressively increasing moderate swimming program with no weight loading in free style. This has been validated by previous reports\(^34,35\). Daily swimming exercise was performed in a large water tank (100 cm x 40 cm x 90 cm) at 32±1°C a depth of 60 cm. Exercise sessions lasted 10 min on the first day of the training period and was increased by 10 min each 7 days. At the end of the 7th day the animals swam continuously for 20 min. Continuous exercise (30 min) was performed from the 14th day until the end of the training period. Sedentary mice placed in shallow water at 32±1°C, 30 min, 5 days/week, were used as controls. At the end of the training period and twenty-four hours after the last exercise bout, all rats were submitted individually to behavioral tests. All experiments were realized between 07:30 and 11:30 a.m. Those experiments were carried out in a sound-attenuated and temperature-controlled (23±1°C) room, illuminated with one 40-W fluorescent light placed 1.3 m away from the apparatus.

Behavioral tests

Elevated plus-maze test

The elevated plus-maze test involves conflict between the desire to explore and the desire to avoid the anxiogenic stimuli of open and high spaces\(^39\). The test is considered to be a measure of generalized anxiety...
since agents used to alleviate generalized anxiety disorder symptoms modify defensive behaviors evoked by the model. The equipment consisted of a “plus” wooden shaped maze with two opposite open arms (30 x 7.5 x 0.3 cm) and two enclosed arms (30 x 7.5 x 21.5 cm) extended from a central platform (7.5 x 7.5 cm). The floor of the maze was painted with impermeable epoxy resin, to avoid urine impregnation. The maze was elevated to a height of 30 cm above the floor. A 0.3 cm high edge of plexiglas circumscribed the open arms to avoid incidental falls. Each individual animal was tested for 5 min starting from the platform facing the closed arm. The time spent in the open arms and enclosed arms as well as the entries into these compartments were measured. An open-arm entry was defined as all four of the paws being placed in the open arm. We also included ethologically derived measures related to the defensive pattern of risk assessment behavior, which has been proven very sensitive to changes in anxiety. Risk assessment is measures comprised for time spent in the head-dipping (exploratory movement of head/shoulders over the side of the maze), and stretched attend postures (exploratory posture in which the body is stretched forward then retracted to the original position without any forward locomotion). Thus, the closed arms and center platform were designated as “protected” areas (i.e., offering relative security) and the “time protected” for head-dipping and stretched attend postures calculated as the time of these behaviors displayed in or from the protected area.

Open-field test

The open-field test relies on a rodent’s innate exploratory behavior counteracted by its natural aversion to open space. The time spent in the interior of the box is related to the exploratory behavior of mice and inversely related to the anxiety level. The open-field apparatus consisted of circular wooden box (61 cm in diameter and 24 cm high) with an open top. In order to record locomotor activity, the open-field was subdivided into 17 parts. Animals were placed into the center of the open-field and allowed to explore freely for 5 min. The following parameters were recorded: time the movements of the animal between parts (ambulation); time for which the animal did not move at all (freezing); time rearing (rising on the hind paws) and time the animal performed self-cleaning (grooming). The total time spent ambulation and freezing was determined as a measure of activity. Exploration behavior in the open-field has also been used as a measure of defensive behavior, where increased line rearing responses are suggestive of a decrease in defensive behaviors.

Morris water maze test

A spatial memory was performed by the method of Morris (1984). The Morris water maze was a circular pool (90 cm diameter and 30 cm height) filled with water (32 °C) to a depth of 14 cm. The pool was located in a dimly lit, soundproof test room with a various visual cues, including a white-black colored poster on the wall, a halogen lamp and the experimenter. The maze was divided into four quadrants, and three equally spaced points served as starting positions around the edge of the pool. The order of the release positions varied systematically throughout the experiment. A circular escape platform (6 cm diameter and 12 cm high) was located in one quadrant 1 cm below the water surface during the test. One familiarization and five acquisition sessions were performed using the Morris water maze. During the familiarization session and acquisition phase of the experiment, each mouse was given three trials. The delay between the trials was 60 s, and a 1 day interval was used between each session. For each trial, the mouse was taken from the home cage and placed into the water maze at one of three randomly determined locations with its head facing the center of the water maze. After the mouse had found and climbed on to the platform, the trial was stopped, and the escape latency was recorded. If the mouse did not climb onto the platform in 60 s, the trial was stopped, and the experimenter guided the mouse to the platform. The time escape latency was used as measures for the development of spatial memory.

Object recognition test

The object recognition test measures non-spatial working memory in the mice and takes advantage of the mice unprompted nature to explore its surroundings. This model is advantageous as it does not require punishment or reward and is quick and simple to implement. Mice are first exposed to two identical objects and then, following a specific delay, the rat is presented with one of the familiar objects and also a novel object. When the subject remembers the previous exposure to the familiar object, the rat will explore the novel object to a greater degree than that of the familiar one. All animals were habituated to the experimental arena in the absence of any specific behavioral stimulus for 20 min/day during 4 days. The objects, made of metal or glass, were fixed to the arena’s floor with adhesive ribbon. In the first day (training session) the animals were placed in the arena containing two different objects (A and B) and left to explore them freely for 5 minutes. The test was repeated 2 hours later to test short-term memory (STM) or 24 hours later to evaluate long-term memory (LTM) after the pre-test. In the tests, one of the objects was changed for a new object (C, for STM or D, for LTM) and the mice were introduced in the arena for more 5 minutes. The positions of the objects (familiar or novel) were randomly permuted for each experimental animal and the arena was cleaned between trials. Exploration was defined as sniffing or touching the object with the nose and/or forepaws. Sitting on or turning around the object was not considered.
Loss memory induced by swimming exercise in mice treated with lithium and anxiolytic-like effect

exploratory behavior. The main index of retention was the exploration ratio - the proportion of total object-exploration time during the test phase that was spent exploring the novel object; t_{novel}/(t_{novel}+t_{familiar}).

Statistical analysis

All data presented are expressed as the means ± S.E.M., and each value reflects the mean of 10 animals per group. The means were compared by analysis of variance (ANOVA), followed by Newman-Keuls multiple comparisons test. A probability level of 0.05 were used to test for statistical significance.

RESULTS

Analysis of variance revealed significant differences between groups on the time spent by mice in the open arms of the plus-maze ($F = 3.238; p<0.05$). The experimental group lithium sedentary (LS), increased the time spent in the open arms on the day of experiment (Figure 1, A; $p<0.05$). In case of the number of entries in the open arms, there were significant differences between groups ($F = 4.093; p<0.05$). The experimental group lithium sedentary (LS), increased the entries onto the open arms (Figure 1, B; $p<0.05$). There was no significant difference in groups in the time spent in the enclosed arms ($F = 2.546; p>0.05$; Figure 1, C) and entries onto the enclosed arms ($F = 0.1926; p>0.05$; Figure 1, D). Analysis of variance revealed significant differences between groups on the risk assessment time ($F = 17.644; p<0.001$). The experimental groups control swimming exercise (CE; $p<0.01$) and lithium swimming exercise (LE; $p<0.001$) increased the risk assessment time (Figure 1, E).

Analysis of variance revealed significant differences between groups on the time spent by mice in the ambulation of the open-field ($F = 3.837; p<0.05$). The experimental group lithium sedentary (LS), increased the time spent in the ambulation when compared to control sedentary (CS) ($p<0.05$; Figure 2, A). In case of freezing time, there were significant differences between groups ($F = 3.274; p<0.05$). As shown in Figure 2B, lithium sedentary (LS) and control swimming exercise (CE) significantly decreased the time spent in the freezing ($p<0.05$). Analysis of variance revealed significant differences between groups on the time spent by mice in the rearing ($F = 9.149; p<0.001$). The experimental groups control swimming exercise (CE) and lithium swimming exercise (LE) increased time spent in the rearing ($p<0.05$; Figure 2, C). There was no significant difference in groups to the open-field, when considering the time spent in the grooming ($F = 1.103; p>0.05$; Figure 2, D).

Analysis of variance revealed significant enhancement in spatial learning as decreased of latency to the platform in the Morris water maze. The group control sedentary (CS) decreased the latency time after five days ($F = 5.835; p<0.01$; Figure 3, A). Mice of group lithium sedentary (LS) ($F = 21.512; p<0.001$; Figure 3, B) decreased the latency time after five days ($F = 5.835; p<0.01$; Figure 3, A).

Figure 1, A-E - Behavioral responses on the elevated plus-maze of control and swimming exercise mice 30 days after treated with lithium: (A) open arm time; (B) number open arm entries, (C) enclosed arm time, (D) number enclosed arm entries, and (E) risk assessment time. The experimental groups are: control sedentary (CS), lithium sedentary (LS), control swimming exercise (CE), and lithium swimming exercise (LE). Bars represent the means for each group and the vertical lines represent the standard errors of the means. Newman-Keuls test showed that groups with asterisks are significantly different (n = 10; *$p<0.05$, **$p<0.01$ and ***$p<0.001$).
Figure 2, A-D - Behavioral responses on the open-field of control and swimming exercise mice 30 days after treated with lithium: (A) ambulation; (B) freezing; (C) rearing, and (D) grooming. The experimental groups are: control sedentary (CS), lithium sedentary (LS), control swimming exercise (CE), and lithium swimming exercise (LE). Bars represent the means for each group and the vertical lines represent the standard errors of the means. Newman-Keuls test showed that groups with asterisks are significantly different (n = 10; *p<0.05).

Figure 3, A-D - Behavioral responses on Morris water maze of control and swimming exercise mice 30 days after treated with lithium: (A) latency CS; (B) latency LS, (C) latency CE, and (D) latency LE. The experimental groups are: control sedentary (CS), lithium sedentary (LS), control swimming exercise (CE), and lithium swimming exercise (LE). Bars represent the means for each group and the vertical lines represent the standard errors of the means. Newman-Keuls test showed that groups with asterisks are significantly different (n = 10; ***p<0.001).
and control swimming exercise (CE) \(F = 3.688; p<0.001; \) Figure 3, C) found the platform in significantly shortest time in the Morris water maze in all testing days. Comparison within each group during the five days of Morris maze testing, the latency time revealed a significant progressive decrease in groups lithium sedentary (LS) and control swimming exercise (CE) from the second day the testing. In this period, also the latency significantly decreased in groups lithium swimming exercise (LE) \(F = 3.688; p<0.001; \) Figure 3, D) whose latencies decreased after five days.

Analysis of variance revealed significant enhancement in exploration ratio in the object recognition test \((F = 9.246; p<0.001)\). Mice of group control swimming exercise (CE) increased in exploration ratio in both short (STM) and long-term object recognition memory (LTM), when compared to control sedentary (CS) \((p<0.001 \text{ and } p<0.01; \) respectively). The groups lithium sedentary (LS) and lithium swimming exercise (LE) did not differ significantly from control sedentary (CS) \((p>0.05; \) Figure 4).

DISCUSSION

The results suggest that lithium treatment, swimming exercise and lithium treatment combined with swimming exercise induced an anxiolytic-like effect in mice in the elevated plus-maze test. These symptoms were observed in LS as an increase in time spent in the open arms while less anxious animals will explore open areas longer\(^{37}\). Other ethological measure that can be observed in rodents in the maze is time spent in risk assessment. These ethological elements, which include stretched attend postures (SAP) and head-dipping, have been linked through factor analysis to risk assessment, directed exploration, and displacement activity, respectively\(^{38}\). Furthermore, pharmacological studies have shown that the incorporation of such measures in plus-maze scoring not only reduces the likelihood of false positives and negatives\(^{39,46}\), but also enhances the sensitivity of the model to novel anxiolytic\(^{27}\). These results strongly indicate that lithium treatment and/or swimming exercise results in an improved coping with aversive situations, thus, leading to a reduced anxiety level.

The differences in anxiotypic behavior expressed by these animals are not limited to their performance on the elevated plus-maze. The novel environment is an established measure of general anxiotypic behavior, and levels of locomotion, rearing and grooming in this paradigm can be used as indices of an anxiety-like state in mice\(^{41}\). The LS and CE reduced freezing in the open-field (Figure 2, B), indicated by a reduction of fear and an increase in exploratory activity. In addition, CE and LE increased the time spent in the rearing in open-field (Figure 2, C). Decline in the time spent in the freezing and increase in ambulation in open-field, consistent with reduced anxiety. However, it has also been proposed that changes observed in the time spent in the rearing rather reflect changes in the level of locomotor activity\(^{36}\). It is probable that both of them are indices of rearing behavior and both of them depend on the level of anxiety and the level of locomotor activity. These results indicate that lithium treatment and swimming reduces anxiety-like behaviors in two animal tests of anxiety, without a significant change in total activity levels.

Several physiological mechanisms have been suggested to explain the beneficial effects of lithium and physical exercise on anxiety\(^{48}\). Altho-ugh, it has been shown that lithium and physical exercise can regulate signal transduction pathways in several regions of the brain, and alter the function of several neurotransmitter systems\(^{49,50}\), and in spite of recent neurochemical and behavioral data concerning a neuroprotective role for lithium and physical exercise\(^{51,52}\), its primary effects on anxiety and memory in general are debatable. Animal studies also suggest that lithium may improve memory deficits induced by environmental stressors or neuropathological insult\(^{16,17,48,53,54}\), but whether lithium is effective in altering learning combined with physical exercise is unknown.

131
Comparison within each group during the five days of Morris water maze test, the latency time revealed a significant progressive decrease in groups LS and CE from the second day the testing (Figure 3, B and 3, C). Furthermore, we may conclude from these behavioral data that the effects of lithium and physical exercise may be specific to particular cognitive processes, especially those involving the hippocampus, as has been previously suggested48,55. In support of our findings of lithium enhancements in learning in animals, a clinical report indicated that lithium may be effective in diminishing learning deficits associated with attention-deficit hyperactivity disorder46. Lithium also improves memory deficits in animals which were induced by environmental stressors or neuropathological insult16,17,48. These results strongly indicate that swimming exercise or treatment with lithium seems to be beneficial to cognition. However, as compared to CS, animals LE showed clear signs of blocking effects in learning. The latency significantly decreased in groups CS (Figure 3, A) and LE (Figure 3, D) after five days.

Since we were interested in determining the effects of lithium treatment and/or swimming exercise on spatial learning, testing this aspect of exploratory behavior allowed furthering characterizing the possible effects of lithium and/or swimming exercise in eliciting a response to novelty. Object recognition memory, as agreed to be dependent on the perirhinal cortex57. Whether it is a hippocampal or non-hippocampal dependent task is still in debate. While some studies reported that the task does not require the hippocampus46, several studies support the fact that the hippocampus contributes to learned object familiarity59,60,61.

Mice of group CE increased in exploration ratio in both short (STM) and long-term object recognition memory (LTM), when compared to CS. The groups LS and LE did not differ significantly from CS (Figure 4). Object recognition memory is assessed by the preference that normal animals display for exploring novel, rather than familiar, complex objects44. In the present study, although the groups LS and LE discriminated between the two objects during acquisition training, CE exhibited much of explorative behavior for the objects when compared to CS. This data agrees with previous findings showing that swimming exercise increases the approaches to novel objects62. It should be noted, however, that there was no significant difference in object recognition between the group receiving lithium alone and the group receiving both lithium and swimming exercise prior to the test. This suggests that the inclusion of swimming exercise did not add significantly to the behavioral improvement brought about by lithium treatment. In addition, Vasconcellos et al.12 demonstrated that rats chronically treated with lithium showed effects in reference memory errors but not in working memory errors in the Morris water maze.17 Consequently, we may conclude from these behavioral data that the effects of lithium may be specific to particular cognitive processes, especially those involving the hippocampus, as has been previously suggested13,61. The observed differences cannot be attributed to changes in anxiety when faced by a new object, since no differences between groups in the specific anxiety tests carried out in plus-maze and open-field (Figure 1 and 2). Thus, it is likely that the differences observed in performance during the two retention sessions are attributable to a modulation of learning and memory processes. However, due to the presence of the treatment before the acquisition sessions, it is not possible to establish whether the changes in the performance during the retention sessions are attributable to a modulation of the information processing during the sessions, a modulation of memory consolidation after the sessions or a combination of both possibilities.

The present study addressed several questions, including assessing if the effects of lithium combined with swimming exercise were similar and if distinct changes are seen in different animal models of learning and memory in Morris water maze and object recognition. Interestingly, we demonstrated that improve memory formation occurs with each intervention alone than with the combination of swimming exercise and lithium treatment. This suggests that lithium treatment blocks the behavioral improvement induced by swimming exercise. It is interesting to note that a combination of behavioral and pharmacological therapy is considered the most effective clinical intervention for depression. The possible mechanism is the effects antagonistic established interaction of lithium and physical exercise with the serotonergic system. Lithium administration has been shown to increased 5-HT release64 and 5-HT synthesis60 in the rat dorsal hippocampus. On the other hand, chronic swimming exercise reduced 5-HT and 5-HIAA levels in the hippocampus66. It is thus plausible to assume that swimming exercise might influence the 5-HT system to modulate other neural transmitter systems which collectively improve spatial learning, with different mechanisms for lithium. Furthermore, it has been pointed that the effects of a specific neural transmitter on learning and memory can often be demonstrated by a variety of tasks67, indicating that several neural systems may be affected by a neurotransmitter. As multiple memory systems interact extensively in the mice brain, swimming exercise and/or lithium treatment is expected to have broad effects on learning and memory in general. The discussion suggested possible pharmacological bases for this shift; however, the precise mechanism underlying this change is currently unknown. Whatever these changes are, they underscore the need for more studies to be performed on the functional interaction between the various individual
hippocampal subfields. Furthermore, we may conclude from these behavioral data that the effects of swimming exercise and/or lithium may be specific to particular cognitive processes, especially those involving the hippocampus, as has been previously suggested.13,68

In conclusion, a great deal of scientific evidence supports exercise and lithium treatment as being beneficial to mental health. These benefits include a reduction in anxiety, depression and negative mood. The present study found that swimming exercise and/or lithium treatment induced an anxiolytic-like effect, indicating that interactions between physical activity and/or lithium may be beneficial. It is interesting to note that a combination of behavioral and pharmacological therapy is considered the most effective clinical intervention for depression. However, the lithium treatment blocks the learning and memory improvement induced by swimming exercise in mice. Our results provide evidence that stimulates investigation of the possibility that swimming exercise, in conjunction with lithium treatment, could represent a new approach to improvement of behavioral management in depression.

REFERENCES

Loss memory induced by swimming exercise in mice treated with lithium and anxiolytic-like effect

